A spectral approximation scheme for the Stokes equations
نویسندگان
چکیده
منابع مشابه
An approximation scheme of stochastic Stokes equations ∗
This work is concerned with the approximation to the solutions of the stochastic Stokes equations by the splitting up method. We apply the resolvent operator to evaluate the solution of the deterministic equations at the endpoints of every small interval, and the error is estimated.
متن کاملStabilized Spectral Element Approximation for the Navier Stokes Equations
The conforming spectral element methods are applied to solve the linearized Navier–Stokes equations by the help of stabilization techniques like those applied for finite elements. The stability and convergence analysis is carried out and essential numerical results are presented demonstrating the high accuracy of the method as well as its robustness. c © 1998 John Wiley & Sons, Inc. Numer Metho...
متن کاملA Legendre-spectral scheme for solution of nonlinear system of Volterra-Fredholm integral equations
This paper gives an ecient numerical method for solving the nonlinear systemof Volterra-Fredholm integral equations. A Legendre-spectral method based onthe Legendre integration Gauss points and Lagrange interpolation is proposedto convert the nonlinear integral equations to a nonlinear system of equationswhere the solution leads to the values of unknown functions at collocationpoints.
متن کاملA Local Pressure Boundary Condition Spectral Collocation Scheme for the Three-Dimensional Navier-Stokes Equations
A spectral collocation scheme for the three-dimensional incompressible (u, p) formulation of the Navier–Stokes equations, in domains Ω with a non-periodic boundary condition, is described. The key feature is the high order approximation, by means of a local Hermite interpolant, of a Neumann boundary condition for use in the numerical solution of the pressure Poisson system. The time updates of ...
متن کاملA Discrete Kinetic Approximation for the Incompressible Navier Stokes Equations
Abstract. In this paper we introduce a new class of numerical schemes for the incompressible Navier-Stokes equations, which are inspired by the theory of discrete kinetic schemes for compressible fluids. For these approximations it is possible to give a stability condition, based on a discrete velocities version of the Boltzmann H–theorem. Numerical tests are performed to investigate their accu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical and Computer Modelling
سال: 2004
ISSN: 0895-7177
DOI: 10.1016/j.mcm.2003.10.049